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Basic Queueing

• Push message “ABC” onto queue Q

• Consume a message from queue Q

• Atomic operations



Basic Publish/Subscribe

"bar"
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note lack of connecting lines



AMQP

• Yet another messaging standard

• Can be thought of as only offering publish/subscribe

• Has sufficient knobs to implement simple queueing and other patterns

• pub/sub at heart is actually pretty great in practice*



AMQP

• Standard is machine-readable XML meant to be mechanically 
converted into driver implementations

• YES!!!!11!1!!!



AMQP

• Protocol is meh but fine

• Can express interesting messaging patterns



AMQP
Double-labeled Messages?

exchange

topic

Subject:

Subject2:
==

Exchanges are typed and provide different enqueueing behavior
Some types consider topic, some don’t



AMQP

meta-syntactic
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queue + binding rule



RabbitMQ
An Erlang AMQP broker implementation

• Well-known for

• Speed

• Being widely deployed

• Somehow awesome because it’s Erlang!



At Idealist

• Traditional web cluster design: balancers, app servers, data stores, 
redundancy

• Generally synchronous communication between user-facing apps and 
inside services during app requests (e.g. SQL / noSQL reads block)

• Most complex request side-effects are kicked off asynchronously with 
AMQP via loosely coupled observers

• Since it’s there, we use AMQP for general processing and message bus 
purposes too



A simple scaling pipeline

Snowball



• Users can receive search results periodically by email

• Many users are interested in the same thing
“Part-time volunteer opportunities in New York City”

• Some of those people differ in their preferred language or other 
characteristics that affect messaging

• Not duplicating processing effort would be swell



• Run a search, retrieve results

• Segment recipients by language, etc.

• Render search results
in segment-specific ways

• Compose individualized email per recipient

• Send SMTP

1 message

1-8 messages

1-30,000 messages

1 message

1 message



run search

group recipients

deliver email

compose emails

render artifacts

batch-search

workers

rabbitmq
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numbers loosely inspired by actual facts



Observing change

CRUD



At Idealist

• Reads are frequent and dirt cheap

• Uninteresting writes are infrequent and kinda cheap
(e.g. updating statistics)

• Interesting writes are rare and relatively expensive
(e.g. burst of SQL DML)

• So why not make them REALLY expensive?



• Variety of domain objects or documents; many with deep structure

• Canonically stored in SQL, also capable of dirt simple reversible JSON 
key/value serialization

• Domain object creation, update and deletion (CUD) tracking can be 
enabled for any process



• CUD events emit MQ messages to the cud exchange

• Message contains enough state diff information to reconstitute the full 
before and after states of the domain object

• Message contains light context (whodunnit)
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• Low volume:  <100/sec    Hefty: ~6k    Wide: ~40 subscriptions

• Decoupled behavior tied to state change

• Diff transmission eliminates DB I/O for some classes of consumers

• Any process can emit messages to cud, including cud consumers

• All cud consumers also provide a synchronous API for testing (yay) 
and clever (boo) use cases



pub/sub at heart is actually pretty 
great in practice*



• The inability to directly delivery to a queue has pleasant side effects

• Make copies of messages in new queues as an afterthought

• If you’ve ever used tee, or had MySQL’s insane(ly) flexible replication 
got you out of a production jam (oh ****, we need this data over there too, now!)

• Tremendously useful for migrating running services consuming active 
streams

• But.



• AFAIK, can’t change the type of an exchange while it’s running

• Sometimes service migration also involves a new version of your 
message format

• Adding more queues doesn’t directly help that



• Our production cluster can host n parallel running configurations

• Though only one is routing traffic for .org

• Maintaining backward compatibility for message formats, especially in 
cud, is not a lot of fun

At Idealist



Virtual Hosts

• AMQP has a notion of a “virtual host”, a private namespace for 
exchanges, queues, etc.

• Idealist makes a new virtual host per configuration
    /config/56631
	  	  	  /config/56632
	  	  	  /config/...

• Only one moving part of configuration to twiddle; exchange + queue 
names are constant and easy to monitor
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Thanks!

• Lots more stories!

• jason@idealist.org	  |	  jek@discorporate.us
jek on freenode
@__jek__


