
 AMQP at

Basic Queueing

• Push message “ABC” onto queue Q

• Consume a message from queue Q

• Atomic operations

Basic Publish/Subscribe

"bar"

"foo"

I listen for
"foo"

I listen for
"bar"

I listen for
"foo" or

"bar"

note lack of connecting lines

AMQP

• Yet another messaging standard

• Can be thought of as only offering publish/subscribe

• Has sufficient knobs to implement simple queueing and other patterns

• pub/sub at heart is actually pretty great in practice*

AMQP

• Standard is machine-readable XML meant to be mechanically
converted into driver implementations

• YES!!!!11!1!!!

AMQP

• Protocol is meh but fine

• Can express interesting messaging patterns

AMQP
Double-labeled Messages?

exchange

topic

Subject:

Subject2:
==

Exchanges are typed and provide different enqueueing behavior
Some types consider topic, some don’t

AMQP

meta-syntactic
"foo"

I listen for
"foo"

I listen for
"bar"

I listen for
"foo" or

"bar"

meta-syntactic
exchange

queue + binding rule

RabbitMQ
An Erlang AMQP broker implementation

• Well-known for

• Speed

• Being widely deployed

• Somehow awesome because it’s Erlang!

At Idealist

• Traditional web cluster design: balancers, app servers, data stores,
redundancy

• Generally synchronous communication between user-facing apps and
inside services during app requests (e.g. SQL / noSQL reads block)

• Most complex request side-effects are kicked off asynchronously with
AMQP via loosely coupled observers

• Since it’s there, we use AMQP for general processing and message bus
purposes too

A simple scaling pipeline

Snowball

• Users can receive search results periodically by email

• Many users are interested in the same thing
“Part-time volunteer opportunities in New York City”

• Some of those people differ in their preferred language or other
characteristics that affect messaging

• Not duplicating processing effort would be swell

• Run a search, retrieve results

• Segment recipients by language, etc.

• Render search results
in segment-specific ways

• Compose individualized email per recipient

• Send SMTP

1 message

1-8 messages

1-30,000 messages

1 message

1 message

run search

group recipients

deliver email

compose emails

render artifacts

batch-search

workers

rabbitmq

1000/sec

-

500/sec

150,000

16k

4

100k

12,000

50 bytes

-

-

10

Drain

6000/sec

Message Size Fill

-

1k

Queue

2

3000/sec

1k 2000/sec

500/sec

Typical
Q Size

run search

group recipients

deliver email

compose emails

render artifacts

numbers loosely inspired by actual facts

Observing change

CRUD

At Idealist

• Reads are frequent and dirt cheap

• Uninteresting writes are infrequent and kinda cheap
(e.g. updating statistics)

• Interesting writes are rare and relatively expensive
(e.g. burst of SQL DML)

• So why not make them REALLY expensive?

• Variety of domain objects or documents; many with deep structure

• Canonically stored in SQL, also capable of dirt simple reversible JSON
key/value serialization

• Domain object creation, update and deletion (CUD) tracking can be
enabled for any process

• CUD events emit MQ messages to the cud exchange

• Message contains enough state diff information to reconstitute the full
before and after states of the domain object

• Message contains light context (whodunnit)

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

• Low volume: <100/sec Hefty: ~6k Wide: ~40 subscriptions

• Decoupled behavior tied to state change

• Diff transmission eliminates DB I/O for some classes of consumers

• Any process can emit messages to cud, including cud consumers

• All cud consumers also provide a synchronous API for testing (yay)
and clever (boo) use cases

pub/sub at heart is actually pretty
great in practice*

• The inability to directly delivery to a queue has pleasant side effects

• Make copies of messages in new queues as an afterthought

• If you’ve ever used tee, or had MySQL’s insane(ly) flexible replication
got you out of a production jam (oh ****, we need this data over there too, now!)

• Tremendously useful for migrating running services consuming active
streams

• But.

• AFAIK, can’t change the type of an exchange while it’s running

• Sometimes service migration also involves a new version of your
message format

• Adding more queues doesn’t directly help that

• Our production cluster can host n parallel running configurations

• Though only one is routing traffic for .org

• Maintaining backward compatibility for message formats, especially in
cud, is not a lot of fun

At Idealist

Virtual Hosts

• AMQP has a notion of a “virtual host”, a private namespace for
exchanges, queues, etc.

• Idealist makes a new virtual host per configuration
 /config/56631
	 	 	 /config/56632
	 	 	 /config/...

• Only one moving part of configuration to twiddle; exchange + queue
names are constant and easy to monitor

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

Thanks!

• Lots more stories!

• jason@idealist.org	 |	 jek@discorporate.us
jek on freenode
@__jek__

