
 AMQP at

Basic Queueing

• Push message “ABC” onto queue Q

• Consume a message from queue Q

• Atomic operations

Basic Publish/Subscribe

"bar"

"foo"

I listen for
"foo"

I listen for
"bar"

I listen for
"foo" or

"bar"

note lack of connecting lines

AMQP

• Yet another messaging standard

• Can be thought of as only offering publish/subscribe

• Has sufficient knobs to implement simple queueing and other patterns

• pub/sub at heart is actually pretty great in practice*

AMQP

• Standard is machine-readable XML meant to be mechanically
converted into driver implementations

• YES!!!!11!1!!!

AMQP

• Protocol is meh but fine

• Can express interesting messaging patterns

AMQP
Double-labeled Messages?

exchange

topic

Subject:

Subject2:
==

Exchanges are typed and provide different enqueueing behavior
Some types consider topic, some don’t

AMQP

meta-syntactic
"foo"

I listen for
"foo"

I listen for
"bar"

I listen for
"foo" or

"bar"

meta-syntactic
exchange

queue + binding rule

RabbitMQ
An Erlang AMQP broker implementation

• Well-known for

• Speed

• Being widely deployed

• Somehow awesome because it’s Erlang!

At Idealist

• Traditional web cluster design: balancers, app servers, data stores,
redundancy

• Generally synchronous communication between user-facing apps and
inside services during app requests (e.g. SQL / noSQL reads block)

• Most complex request side-effects are kicked off asynchronously with
AMQP via loosely coupled observers

• Since it’s there, we use AMQP for general processing and message bus
purposes too

A simple scaling pipeline

Snowball

• Users can receive search results periodically by email

• Many users are interested in the same thing
“Part-time volunteer opportunities in New York City”

• Some of those people differ in their preferred language or other
characteristics that affect messaging

• Not duplicating processing effort would be swell

• Run a search, retrieve results

• Segment recipients by language, etc.

• Render search results
in segment-specific ways

• Compose individualized email per recipient

• Send SMTP

1 message

1-8 messages

1-30,000 messages

1 message

1 message

run search

group recipients

deliver email

compose emails

render artifacts

batch-search

workers

rabbitmq

1000/sec

-

500/sec

150,000

16k

4

100k

12,000

50 bytes

-

-

10

Drain

6000/sec

Message Size Fill

-

1k

Queue

2

3000/sec

1k 2000/sec

500/sec

Typical
Q Size

run search

group recipients

deliver email

compose emails

render artifacts

numbers loosely inspired by actual facts

Observing change

CRUD

At Idealist

• Reads are frequent and dirt cheap

• Uninteresting writes are infrequent and kinda cheap
(e.g. updating statistics)

• Interesting writes are rare and relatively expensive
(e.g. burst of SQL DML)

• So why not make them REALLY expensive?

• Variety of domain objects or documents; many with deep structure

• Canonically stored in SQL, also capable of dirt simple reversible JSON
key/value serialization

• Domain object creation, update and deletion (CUD) tracking can be
enabled for any process

• CUD events emit MQ messages to the cud exchange

• Message contains enough state diff information to reconstitute the full
before and after states of the domain object

• Message contains light context (whodunnit)

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

• Low volume: <100/sec Hefty: ~6k Wide: ~40 subscriptions

• Decoupled behavior tied to state change

• Diff transmission eliminates DB I/O for some classes of consumers

• Any process can emit messages to cud, including cud consumers

• All cud consumers also provide a synchronous API for testing (yay)
and clever (boo) use cases

pub/sub at heart is actually pretty
great in practice*

• The inability to directly delivery to a queue has pleasant side effects

• Make copies of messages in new queues as an afterthought

• If you’ve ever used tee, or had MySQL’s insane(ly) flexible replication
got you out of a production jam (oh ****, we need this data over there too, now!)

• Tremendously useful for migrating running services consuming active
streams

• But.

• AFAIK, can’t change the type of an exchange while it’s running

• Sometimes service migration also involves a new version of your
message format

• Adding more queues doesn’t directly help that

• Our production cluster can host n parallel running configurations

• Though only one is routing traffic for .org

• Maintaining backward compatibility for message formats, especially in
cud, is not a lot of fun

At Idealist

Virtual Hosts

• AMQP has a notion of a “virtual host”, a private namespace for
exchanges, queues, etc.

• Idealist makes a new virtual host per configuration
 /config/56631
	
 	
 	
 /config/56632
	
 	
 	
 /config/...

• Only one moving part of configuration to twiddle; exchange + queue
names are constant and easy to monitor

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

indexer

invoicer

bayesian classier

abuse sniffer

salesforce syncer

cud
activity feeder

alerter

geocoder

thinger

frobnicator

fnord

Thanks!

• Lots more stories!

• jason@idealist.org	
 |	
 jek@discorporate.us
jek on freenode
@__jek__

